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Cloud Types and Their Roles

Cloud types are controlled by different dynamics,

thermodynamics, and microphysics.
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International Satellite Cloud Climatology Project

4 (ISCCP) approach (Rossow and Schiffer 1999) uses the
combination of cloud-top pressure and cloud optical
depth to classify clouds into either cumulus (Cu), stra-
tocumulus (Sc). stratus (St), altocumulus (Ac), altostra-
, tus (As), nimbostratus (Ns), cirrus, cirrostratus, or deep
convective clouds. Table 2 shows the IWangand Sassen, 2001 ;
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Cloud Type as an Important Part of
ISCCP

TABLE 1. Data specification for the International Satellite
Cloud Climatology Project.

Parameters—Spatial and temporal averages and variances (or another
statistical measure of the shape of the temporal distribution) are re-
quired for each of the following parameters.

Precision
(30-day
averages)
Amounts
Total cloud amount (fraction)* +0.03
amount (fraction)* +0.05
Middle cloud amount (fraction) +0.05
Ount (fraction)* +0.05
ep convective cloud amount (fraction) +0.05
exggt
|rrus cloud-top height (km)* +1.00
Mindie level/cloud-top height (km) 100
’I..Q&Llcm_d.cmd:‘mp height (km) +0.50
Deep convective| cloud-top height (km) +1.00
Clopdais aasature (K) for each
+1.00

Clo

Cloud Size Distribution

Average Narrow Band Radiances (VIS and IR)*

Spatial Averaging—The information is to be avéraged over ap-
proximately 250-km by 250-km boxes

Time Sampling—Every 3 hours, i.e., 8 times a day, centered
around the synoptic observation times

Time Averaging—The global cloud climatology will consist of 30-
day averages for each of the 8 observing times per day

Length of Time Series—35 years

* Highest priority
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ISCCP Cloud Type Classifications

C2 D-series
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qualitative, but indicates the cloud types summarized in Stage C2



Cloud Climatology from the ISCCP
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Active Measurements for Effective
Cloud Type Identifications
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CloudSat Cloud Classification Products
e Radar-only (2B-CLDCLASS)
e Radar-lidar combined (2B-CLDCLASS-Lidar)

2B-CLDCLASS-Lidar Flowchart o, uis with

confidence level
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Comparison of Different Cloud Type
Climatology

Over Land

e Surface
Based

* ISCCP

* CloudSat
Radar-Lidar

Zonal Average Cloud Occurence (%)

Over Ocean
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Normal with DOOP Periods

Normal-daytime DOOP
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* The two periods
offer a consistent
annual mean
daytime cloud type
distributions.
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* Each type cloud
has their preferred
regions associated

e L —— with dynamics,

thermodynamics,

and water vapor

supply.
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Day/Night Cloud Type Variations
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* For weaker surface
driving clouds, Cirrus,
Sc +St and Ac, LW
cooling increase their
amount during night.
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* Less convective clouds
(Cu +Deep) over
middle-latitude land
during night.
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* For Cu over oceans,
changes depend on
regions.
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Cloud Type Dependent TOA Cloud

Radiative Forcings

* 2B-CLDCLASS-lidar data (2006-2015) were collocated with CERES
TOA cloud radiative forcings (FlashFlux, 25x25 km).
* Single type dominated CERES data were used.
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Dynamics

: Cloud
Thermodynamics
Microphysics  ¢mmmmmmm  Types




Annual Cycles of Zonal Mean
Cloud Types
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* Clear signatures of solar radiation driven annual cycle.

* In tropics, high, Ac, Cu, and deep convective clouds share similar features.

* As, Sc + St, and Ns clouds are also driven by large-scale dynamics and
thermodynamics.



Month Index

Annual Cycles of Meridional Mean
Cloud flh“ypes (20S-20N)
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= ==+ High cloud production or maintenance rate is
: higher over the warm pool region.



Month Index

Interannual Cloud Type Variations

208-20N

From 2006-2015, there are a few significant ENSO events, which drive
interannual tropical cloud type variations.
During 2010-2015, from the negative to positive phase, clouds shift
accordingly.
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Month Index

Interannual Cloud Type Variations
Anomaly

Deep convective clouds and associated high and Ac clouds
move systematically as ENSO evolving!
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Tropical Cloud Type Distributions
during Positive and Negative Phases
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Summary and Thoughts

* Difference types of clouds working together
regulate global water and energy cycles.

* Cloud-radiation feedbacks as a result of changing
frequency of cloud types and changing properties
of a cloud type.

* ISCCP and CloudSat cloud type products offer an
important data source to study cloud type
dependent feedbacks.



Dynamics-thermodynamics-
radiation-cloud interactions
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Process-oriented

! Other | studies
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Cloud Type Future cloud type
Distributions __ - resolved cloud
and Properties simulations

Following Natural Clouds.
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